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Deforming a Lie algebra by means of a 2-form
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Abstract

We consider a vector space V over K = R or C, equipped with a skew symmetric bracket [·, ·] : V × V → V and a
2-form ω : V × V → K. A simple change of the Jacobi identity to the form [A, [B, C]] + [C, [A, B]] + [B, [C, A]] =

ω(B, C)A + ω(A, B)C + ω(C, A)B opens up new possibilities, which shed new light on the Bianchi classification of three-
dimensional Lie algebras.
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1. Introduction

In Ref. [2] we considered a real vector space V of dimension n equipped with a Riemannian metric g and a
symmetric 3-tensor Υi jk such that: (i) Υi jk = Υ(i jk), (ii) Υi j j = 0 and (iii) Υ jkiΥlmi + Υl j iΥkmi + ΥkliΥ jmi =

g jk glm + gl j gkm + gkl g jm . Such a tensor defines a bilinear product {·, ·} : V × V → V given by

{A, B}i = Υi jk A j Bk .

This product is symmetric:

{A, B} = {B, A} (1.1)

due to property (i), and it satisfies a trilinear identity:

{A, {B, C}} + {C, {A, B}} + {B, {C, A}} = g(B, C)A + g(A, B)C + g(C, A)B, (1.2)

due to property (iii). Restricting our attention to structures (V, g, {·, ·}) associated with tensors Υ as above, we note
that they are related to the isoparametric hypersurfaces in spheres [3,4]. Using Cartan’s results [5] on isoparametric
hypersurfaces we concluded in [6] that structures (V, g, {·, ·}) exist only in dimensions 5, 8, 14 and 26.

A striking feature of property (1.2) is that it resembles very much the Jacobi identity satisfied by every Lie algebra.
The main difference is that for a Lie algebra the bracket {·, ·} should be anti-symmetric and that the analog of (1.2)
should have r.h.s. equal to zero.

Adapting properties (1.1) and (1.2) to the notion of a Lie algebra we are led to the following structure.

E-mail address: nurowski@fuw.edu.pl.

0393-0440/$ - see front matter c© 2007 Published by Elsevier B.V.
doi:10.1016/j.geomphys.2006.10.008

http://www.elsevier.com/locate/jgp
mailto:nurowski@fuw.edu.pl
http://dx.doi.org/10.1016/j.geomphys.2006.10.008


1326 P. Nurowski / Journal of Geometry and Physics 57 (2007) 1325–1329

Definition 1.1. A vector space V equipped with a bilinear bracket [·, ·] : V × V → V and a 2-form ω : V × V →

K = R or C such that

[A, B] = −[B, A] and

[A, [B, C]] + [C, [A, B]] + [B, [C, A]] = ω(B, C)A + ω(A, B)C + ω(C, A)B (1.3)

is called an ω-deformed Lie algebra.

This definition obviously generalizes the notion of a Lie algebra and coincides with it when ω ≡ 0. Note also that
if the dimension of V is dim V = 2, then ω(B, C)A + ω(A, B)C + ω(C, A)B ≡ 0 for any 2-form ω and every
A, B, C ∈ V . Thus in two dimensions it is impossible to ω-deform the Jacobi identity, and two-dimensional ω-
deformed Lie algebras are just the Lie algebras equipped with a 2-form ω. This is no longer true if dim V 6= 2. Indeed
assuming that dim V 6= 2 and that ω(B, C)A + ω(A, B)C + ω(C, A)B ≡ 0 for all A, B, C ∈ V we easily prove that
ω ≡ 0.

The aim of this note is to show that there exist ω-deformed Lie algebras in dimensions greater than 2 which are not
just the Lie algebras.

2. Dimension 3

It follows that if dim V ≤ 2 then all the ω-deformed Lie algebras are just the Lie algebras. To show that in
dim V = 3 the situation is different we follow the procedure used in the Bianchi classification [1] of three-dimensional
Lie algebras.

Let {ei }, i = 1, 2, 3, be a basis of an ω-deformed three-dimensional Lie algebra. Then, due to the skew symmetry,
we have [ei , e j ] = ck

i j ek , ω(ei , e j ) = ωi j , where ck
i j = −ck

ji and ωi j = −ω j i . Due to the ω-deformed Jacobi identity
(1.3), we also have

cm
li ci

jk + cm
ki c

i
l j + cm

ji c
i
kl = δm

l ω jk + δm
k ωl j + δm

j ωkl ,

which is equivalent to

cm
i[lc

i
jk]

+ δm
[l ω jk] = 0. (2.1)

We now find all the orbits of the above defined pair of tensors (ck
i j , ωi j ) under the action of the group GL(3, R).

We recall that in three dimensions, we have the totally skew symmetric Levi-Civita symbol εi jk , and its totally skew
symmetric inverse εi jk such that εi jkε

ilm
= δl

jδ
m
k − δm

j δl
k . This can be used to rewrite the ω-deformed Jacobi identity

(2.1). Indeed, since in three dimensions every totally skew symmetric 3-tensor is proportional to εi jk , the l.h.s. of (2.1)
can be written as

tm
= 0 with tm

= (cm
il ci

jk + δm
l ω jk)ε

l jk .

In addition, we may use εi jk to write ci
jk as

ci
jk = nilε jkl − δi

j ak + δi
ka j , (2.2)

where the symmetric matrix nil is related to ck
i j via

nil
=

1
2
(cil

+ cli ), with cil
=

1
2

ci
jkε

jkl .

The vector am is related to ck
i j via

am =
1
2
εmilc

il .

Similarly, we write ωi j as



P. Nurowski / Journal of Geometry and Physics 57 (2007) 1325–1329 1327

ωi j = εi jkbk, (2.3)

with

bk
=

1
2
εmikωik .

Thus, in three dimensions the structural constants (ck
i j , ωi j ) of the ω-deformed Lie algebra are uniquely determined

via (2.2) and (2.3) by specifying a symmetric matrix nil and two vectors am and bk . In terms of the triple (nil , am, bk)

the vector tm is given by tm
= 4nmlal + 2bm , so that the ω-deformed Jacobi identity (2.1) is simply

bi
= −2nilal . (2.4)

Thus, given nil and am , the vector bm defining ω is totally determined. Now we use the action of the GL(3, R) group
to bring nil to the diagonal form (this is always possible since nil is symmetric), so that

nil
= diag(n1, n2, n3).

It is obvious that without loss of generality we always can have

ni
= ±1, 0 i = 1, 2, 3.

After achieving this we may still use an orthogonal transformation preserving the matrix nil to bring the vector
am to a form simpler than am = (a1, a2, a3). For example in the case nil

= diag(1, 1, 1) we may always achieve
am = (0, 0, a). Thus to represent a GL(3, R) orbit of (ci

jk, ωi j ) it is enough to take nil in the diagonal form with

the diagonal elements equal to ±1, 0 and to take am in the simplest possible form obtainable by the action of O(nil).
Finally we notice that the so specified choice of nil is still preserved when the basis is scaled according to

e1 → λ1e1, e2 → λ2e2 e3 → λ3e3, (2.5)

with

(λ1λ2 − λ3)n3 = 0, (λ3λ1 − λ2)n2 = 0, (λ2λ3 − λ1)n1 = 0.

These transformations can be used to scale the vector am via

am → (λ1a1, λ2a2, λ3a3).

We are now in a position to give the full classification of three-dimensional ω-deformed Lie algebras. In all the
types of the classification the commutation relations and the ω are given by

[e1, e2] = n3e3 − a2e1 + a1e2, [e3, e1] = n2e2 − a1e3 + a3e1, [e2, e3] = n1e1 − a3e2 + a2e3

ω(e1, e2) = −2n3a3, ω(e3, e1) = −2n2a2, ω(e2, e3) = −2n1a1.

The classification splits into two main branches depending on whether am vanishes or not.

If am = 0, then bm
= 0. Thus ω = 0 and all such structures correspond to the usual three-dimensional Lie algebras

of the classical Bianchi types I , I I , V I0, V I I0, V I I I and I X (see the table below).

If am 6= 0 then, depending on the signature of nil , vector am may be spacelike, timelike, null or degenerate. The
orthogonal transformations that we use to normalize this vector preserve its type, so the classification splits according
to the causal properties of am . If n2

= n3
= 0 or n1

= −n2
= 1, n3

= 0, we may use transformations (2.5) to
totally fix am . This leads to types V , I V , I VT and V IT , V IS, V IN below. In all other cases transformations (2.5) can
be used to express am in terms of only one parameter a > 0 so that the different positive parameters a correspond to
nonequivalent algebras. The resulting classification is summarized in the following table:
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Bianchi type n1 n2 n3 am bm

I 0 0 0 (0, 0, 0) (0, 0, 0)
I I 1 0 0 (0, 0, 0) (0, 0, 0)
V I0 1 −1 0 (0, 0, 0) (0, 0, 0)
V I I0 1 1 0 (0, 0, 0) (0, 0, 0)
V I I I 1 1 −1 (0, 0, 0) (0, 0, 0)
I X 1 1 1 (0, 0, 0) (0, 0, 0)

V 0 0 0 (0, 0, 1) (0, 0, 0)

I V 1 0 0 (0, 0, 1) (0, 0, 0)
I VT 1 0 0 (1, 0, 0) (−2, 0, 0)

V Ia 1 −1 0 (0, 0, a > 0) (0, 0, 0)
V IT 1 −1 0 (1, 0, 0) (−2, 0, 0)
V IS 1 −1 0 (0, 1, 0) (0, 2, 0)
V IN 1 −1 0 (1, 1, 0) (−2, 2, 0)

V I Ia 1 1 0 (0, 0, a > 0) (0, 0, 0)
V I IT 1 1 0 (1, 0, 0) (−2, 0, 0)

V I I Ia 1 1 −1 (0, 0, a > 0) (0, 0, 2a)

V I I IT a 1 1 −1 (a > 0, 0, 0) (−2a, 0, 0)

V I I INa 1 1 −1 (a > 0, 0, a) (−2a, 0, 2a)

I Xa 1 1 1 (0, 0, a > 0) (0, 0, −2a)

Note that all the types which have bm
= 0 are just the usual three-dimensional Lie algebras. Apart from the already

mentioned types with am
= 0 these are the classical Bianchi types: V , I V , V Ia (with V I1 = I I I ) and V I Ia . With

the exception of the types I and V all the Bianchi types admit ω deformation. It is interesting to note that types V I I I
and I X , which in the Lie algebra setting do not admit am 6= 0 deformation, admit a one-parameter ω-deformation.

We have the following theorem.

Theorem 2.1. All the three-dimensional ω-deformed Lie algebras with ω 6= 0 are given in the following table:

Bianchi type n1 n2 n3 (a1, a2, a3) (b1, b2, b3)

I VT 1 0 0 (1, 0, 0) (−2, 0, 0)

V IT 1 −1 0 (1, 0, 0) (−2, 0, 0)

V IS 1 −1 0 (0, 1, 0) (0, 2, 0)

V IN 1 −1 0 (1, 1, 0) (−2, 2, 0)

V I IT 1 1 0 (1, 0, 0) (−2, 0, 0)

V I I Ia 1 1 −1 (0, 0, a > 0) (0, 0, 2a)

V I I IT a 1 1 −1 (a > 0, 0, 0) (−2a, 0, 0)

V I I INa 1 1 −1 (a > 0, 0, a) (−2a, 0, 2a)

I Xa 1 1 1 (0, 0, a > 0) (0, 0, −2a)

They satisfy the commutation relations

[e1, e2] = n3e3 − a2e1 + a1e2, [e3, e1] = n2e2 − a1e3 + a3e1, [e2, e3] = n1e1 − a3e2 + a2e3

ω(e1, e2) = −2n3a3, ω(e3, e1) = −2n2a2, ω(e2, e3) = −2n1a1

with the real parameters (n1, n2, n3, a1, a2, a3) specified in the table. Algebras corresponding to different
(n1, n2, n3, a1, a2, a3) are nonequivalent.

Finally we show that any ω-deformed Lie algebra must have quite nontrivial structure constants. Indeed, in any
dimension dim V = n > 2 the structure constants of an ω-deformed Lie algebra, which are defined by [ei , e j ] = ck

i j ek ,
may be decomposed as follows:

ci
jk = αi

jk + akδ
i
j − a jδ

i
k,
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where

αi
ik = 0, ak =

1
n − 1

ci
ik .

Then a simple calculation using the ω-deformed Jacobi identity (1.3) shows that

ω(e j , ek) =
n − 1
n − 2

aiα
i
jk .

This shows that nonvanishing ω is only possible if both ai and αi
jk are nonvanishing.
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