Deforming a Lie algebra by means of a 2 -form

Paweł Nurowski
Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, ul. Hoza 69, Warszawa, Poland

Received 14 July 2006; received in revised form 16 October 2006; accepted 16 October 2006
Available online 17 November 2006

Abstract

We consider a vector space V over $\mathbb{K}=\mathbb{R}$ or \mathbb{C}, equipped with a skew symmetric bracket $[\cdot, \cdot]: V \times V \rightarrow V$ and a 2-form $\omega: V \times V \rightarrow \mathbb{K}$. A simple change of the Jacobi identity to the form $[A,[B, C]]+[C,[A, B]]+[B,[C, A]]=$ $\omega(B, C) A+\omega(A, B) C+\omega(C, A) B$ opens up new possibilities, which shed new light on the Bianchi classification of threedimensional Lie algebras. © 2007 Published by Elsevier B.V.

Keywords: Lie algebras; Bianchi classification; Deformation

1. Introduction

In Ref. [2] we considered a real vector space V of dimension n equipped with a Riemannian metric g and a symmetric 3-tensor $\Upsilon_{i j k}$ such that: (i) $\Upsilon_{i j k}=\Upsilon_{(i j k)}$, (ii) $\Upsilon_{i j j}=0$ and (iii) $\Upsilon_{j k i} \Upsilon_{l m i}+\Upsilon_{l j i} \Upsilon_{k m i}+\Upsilon_{k l i} \Upsilon_{j m i}=$ $g_{j k} g_{l m}+g_{l j} g_{k m}+g_{k l} g_{j m}$. Such a tensor defines a bilinear product $\{\cdot, \cdot\}: V \times V \rightarrow V$ given by

$$
\{A, B\}_{i}=\Upsilon_{i j k} A_{j} B_{k}
$$

This product is symmetric:

$$
\begin{equation*}
\{A, B\}=\{B, A\} \tag{1.1}
\end{equation*}
$$

due to property (i), and it satisfies a trilinear identity:

$$
\begin{equation*}
\{A,\{B, C\}\}+\{C,\{A, B\}\}+\{B,\{C, A\}\}=g(B, C) A+g(A, B) C+g(C, A) B \tag{1.2}
\end{equation*}
$$

due to property (iii). Restricting our attention to structures $(V, g,\{\cdot, \cdot\})$ associated with tensors Υ as above, we note that they are related to the isoparametric hypersurfaces in spheres [3,4]. Using Cartan's results [5] on isoparametric hypersurfaces we concluded in [6] that structures ($V, g,\{\cdot, \cdot\}$) exist only in dimensions 5, 8, 14 and 26.

A striking feature of property (1.2) is that it resembles very much the Jacobi identity satisfied by every Lie algebra. The main difference is that for a Lie algebra the bracket $\{\cdot, \cdot\}$ should be anti-symmetric and that the analog of (1.2) should have r.h.s. equal to zero.

Adapting properties (1.1) and (1.2) to the notion of a Lie algebra we are led to the following structure.

[^0]Definition 1.1. A vector space V equipped with a bilinear bracket $[\cdot, \cdot]: V \times V \rightarrow V$ and a 2-form $\omega: V \times V \rightarrow$ $\mathbb{K}=\mathbb{R}$ or \mathbb{C} such that

$$
\begin{align*}
& {[A, B]=-[B, A] \text { and }} \\
& {[A,[B, C]]+[C,[A, B]]+[B,[C, A]]=\omega(B, C) A+\omega(A, B) C+\omega(C, A) B} \tag{1.3}
\end{align*}
$$

is called an ω-deformed Lie algebra.
This definition obviously generalizes the notion of a Lie algebra and coincides with it when $\omega \equiv 0$. Note also that if the dimension of V is $\operatorname{dim} V=2$, then $\omega(B, C) A+\omega(A, B) C+\omega(C, A) B \equiv 0$ for any 2-form ω and every $A, B, C \in V$. Thus in two dimensions it is impossible to ω-deform the Jacobi identity, and two-dimensional ω deformed Lie algebras are just the Lie algebras equipped with a 2 -form ω. This is no longer true if $\operatorname{dim} V \neq 2$. Indeed assuming that $\operatorname{dim} V \neq 2$ and that $\omega(B, C) A+\omega(A, B) C+\omega(C, A) B \equiv 0$ for all $A, B, C \in V$ we easily prove that $\omega \equiv 0$.

The aim of this note is to show that there exist ω-deformed Lie algebras in dimensions greater than 2 which are not just the Lie algebras.

2. Dimension 3

It follows that if $\operatorname{dim} V \leq 2$ then all the ω-deformed Lie algebras are just the Lie algebras. To show that in $\operatorname{dim} V=3$ the situation is different we follow the procedure used in the Bianchi classification [1] of three-dimensional Lie algebras.

Let $\left\{e_{i}\right\}, i=1,2,3$, be a basis of an ω-deformed three-dimensional Lie algebra. Then, due to the skew symmetry, we have $\left[e_{i}, e_{j}\right]=c_{i j}^{k} e_{k}, \omega\left(e_{i}, e_{j}\right)=\omega_{i j}$, where $c_{i j}^{k}=-c_{j i}^{k}$ and $\omega_{i j}=-\omega_{j i}$. Due to the ω-deformed Jacobi identity (1.3), we also have

$$
c_{l i}^{m} c_{j k}^{i}+c_{k i}^{m} c_{l j}^{i}+c_{j i}^{m} c_{k l}^{i}=\delta_{l}^{m} \omega_{j k}+\delta_{k}^{m} \omega_{l j}+\delta_{j}^{m} \omega_{k l}
$$

which is equivalent to

$$
\begin{equation*}
c_{i[l}^{m} c_{j k]}^{i}+\delta_{[l}^{m} \omega_{j k]}=0 \tag{2.1}
\end{equation*}
$$

We now find all the orbits of the above defined pair of tensors $\left(c_{i j}^{k}, \omega_{i j}\right)$ under the action of the group $\mathbf{G L}(3, \mathbb{R})$.
We recall that in three dimensions, we have the totally skew symmetric Levi-Civita symbol $\epsilon_{i j k}$, and its totally skew symmetric inverse $\epsilon^{i j k}$ such that $\epsilon_{i j k} \epsilon^{i l m}=\delta_{j}^{l} \delta_{k}^{m}-\delta_{j}^{m} \delta_{k}^{l}$. This can be used to rewrite the ω-deformed Jacobi identity (2.1). Indeed, since in three dimensions every totally skew symmetric 3 -tensor is proportional to $\epsilon_{i j k}$, the 1.h.s. of (2.1) can be written as

$$
t^{m}=0 \quad \text { with } t^{m}=\left(c_{i l}^{m} c_{j k}^{i}+\delta_{l}^{m} \omega_{j k}\right) \epsilon^{l j k}
$$

In addition, we may use $\epsilon_{i j k}$ to write $c_{j k}^{i}$ as

$$
\begin{equation*}
c_{j k}^{i}=n^{i l} \epsilon_{j k l}-\delta_{j}^{i} a_{k}+\delta_{k}^{i} a_{j}, \tag{2.2}
\end{equation*}
$$

where the symmetric matrix $n^{i l}$ is related to $c_{i j}^{k}$ via

$$
n^{i l}=\frac{1}{2}\left(c^{i l}+c^{l i}\right), \quad \text { with } c^{i l}=\frac{1}{2} c_{j k}^{i} \epsilon^{j k l} .
$$

The vector a_{m} is related to $c_{i j}^{k}$ via

$$
a_{m}=\frac{1}{2} \epsilon_{m i l} c^{i l} .
$$

Similarly, we write $\omega_{i j}$ as

$$
\begin{equation*}
\omega_{i j}=\epsilon_{i j k} b^{k} \tag{2.3}
\end{equation*}
$$

with

$$
b^{k}=\frac{1}{2} \epsilon^{m i k} \omega_{i k} .
$$

Thus, in three dimensions the structural constants $\left(c_{i j}^{k}, \omega_{i j}\right)$ of the ω-deformed Lie algebra are uniquely determined via (2.2) and (2.3) by specifying a symmetric matrix $n^{i l}$ and two vectors a_{m} and b^{k}. In terms of the triple ($n^{i l}, a_{m}, b^{k}$) the vector t^{m} is given by $t^{m}=4 n^{m l} a_{l}+2 b^{m}$, so that the ω-deformed Jacobi identity (2.1) is simply

$$
\begin{equation*}
b^{i}=-2 n^{i l} a_{l} . \tag{2.4}
\end{equation*}
$$

Thus, given $n^{i l}$ and a_{m}, the vector b^{m} defining ω is totally determined. Now we use the action of the $\mathbf{G L}(3, \mathbb{R})$ group to bring $n^{i l}$ to the diagonal form (this is always possible since $n^{i l}$ is symmetric), so that

$$
n^{i l}=\operatorname{diag}\left(n^{1}, n^{2}, n^{3}\right)
$$

It is obvious that without loss of generality we always can have

$$
n^{i}= \pm 1,0 \quad i=1,2,3 .
$$

After achieving this we may still use an orthogonal transformation preserving the matrix $n^{i l}$ to bring the vector a_{m} to a form simpler than $a_{m}=\left(a_{1}, a_{2}, a_{3}\right)$. For example in the case $n^{i l}=\operatorname{diag}(1,1,1)$ we may always achieve $a_{m}=(0,0, a)$. Thus to represent a $\mathbf{G L}(3, \mathbb{R})$ orbit of $\left(c_{j k}^{i}, \omega_{i j}\right)$ it is enough to take $n^{i l}$ in the diagonal form with the diagonal elements equal to $\pm 1,0$ and to take a_{m} in the simplest possible form obtainable by the action of $\mathbf{O}\left(n^{i l}\right)$. Finally we notice that the so specified choice of $n^{i l}$ is still preserved when the basis is scaled according to

$$
\begin{equation*}
e_{1} \rightarrow \lambda_{1} e_{1}, \quad e_{2} \rightarrow \lambda_{2} e_{2} \quad e_{3} \rightarrow \lambda_{3} e_{3} \tag{2.5}
\end{equation*}
$$

with

$$
\left(\lambda_{1} \lambda_{2}-\lambda_{3}\right) n_{3}=0, \quad\left(\lambda_{3} \lambda_{1}-\lambda_{2}\right) n_{2}=0, \quad\left(\lambda_{2} \lambda_{3}-\lambda_{1}\right) n_{1}=0
$$

These transformations can be used to scale the vector a_{m} via

$$
a_{m} \rightarrow\left(\lambda_{1} a_{1}, \lambda_{2} a_{2}, \lambda_{3} a_{3}\right) .
$$

We are now in a position to give the full classification of three-dimensional ω-deformed Lie algebras. In all the types of the classification the commutation relations and the ω are given by

$$
\begin{aligned}
& {\left[e_{1}, e_{2}\right]=n^{3} e_{3}-a_{2} e_{1}+a_{1} e_{2}, \quad\left[e_{3}, e_{1}\right]=n^{2} e_{2}-a_{1} e_{3}+a_{3} e_{1}, \quad\left[e_{2}, e_{3}\right]=n^{1} e_{1}-a_{3} e_{2}+a_{2} e_{3}} \\
& \omega\left(e_{1}, e_{2}\right)=-2 n^{3} a_{3}, \quad \omega\left(e_{3}, e_{1}\right)=-2 n^{2} a_{2}, \quad \omega\left(e_{2}, e_{3}\right)=-2 n^{1} a_{1} .
\end{aligned}
$$

The classification splits into two main branches depending on whether a_{m} vanishes or not.
If $a_{m}=0$, then $b^{m}=0$. Thus $\omega=0$ and all such structures correspond to the usual three-dimensional Lie algebras of the classical Bianchi types $I, I I, V I_{0}, V I I_{0}, V I I I$ and $I X$ (see the table below).

If $a_{m} \neq 0$ then, depending on the signature of $n^{i l}$, vector a_{m} may be spacelike, timelike, null or degenerate. The orthogonal transformations that we use to normalize this vector preserve its type, so the classification splits according to the causal properties of a_{m}. If $n^{2}=n^{3}=0$ or $n^{1}=-n^{2}=1, n^{3}=0$, we may use transformations (2.5) to totally fix a_{m}. This leads to types $V, I V, I V_{T}$ and $V I_{T}, V I_{S}, V I_{N}$ below. In all other cases transformations (2.5) can be used to express a_{m} in terms of only one parameter $a>0$ so that the different positive parameters a correspond to nonequivalent algebras. The resulting classification is summarized in the following table:

| Bianchi type | n^{1} | n^{2} | $n^{3} l$ | l |
| :--- | :---: | ---: | ---: | :--- | :--- |
| l | | | | |

Note that all the types which have $b^{m}=0$ are just the usual three-dimensional Lie algebras. Apart from the already mentioned types with $a^{m}=0$ these are the classical Bianchi types: $V, I V, V I_{a}$ (with $\left.V I_{1}=I I I\right)$ and $V I I_{a}$. With the exception of the types I and V all the Bianchi types admit ω deformation. It is interesting to note that types VIII and $I X$, which in the Lie algebra setting do not admit $a_{m} \neq 0$ deformation, admit a one-parameter ω-deformation.

We have the following theorem.
Theorem 2.1. All the three-dimensional ω-deformed Lie algebras with $\omega \neq 0$ are given in the following table:

Bianchi type	n^{1}	n^{2}	n^{3}	$\left(a_{1}, a_{2}, a_{3}\right)$	$\left(b^{1}, b^{2}, b^{3}\right)$
$I V_{T}$	1	0	0	$(1,0,0)$	$(-2,0,0)$
$V I_{T}$	1	-1	0	$(1,0,0)$	$(-2,0,0)$
$V I_{S}$	1	-1	0	$(0,1,0)$	$(0,2,0)$
$V I_{N}$	1	-1	0	$(1,1,0)$	$(-2,2,0)$
$V I I_{T}$	1	1	0	$(1,0,0)$	$(-2,0,0)$
$V I I I_{a}$	1	1	-1	$(0,0, a>0)$	$(0,0,2 a)$
$V I I I_{T a}$	1	1	-1	$(a>0,0,0)$	$(-2 a, 0,0)$
$V I I I_{N a}$	1	1	-1	$(a>0,0, a)$	$(-2 a, 0,2 a)$
$I X_{a}$	1	1	1	$(0,0, a>0)$	$(0,0,-2 a)$

They satisfy the commutation relations

$$
\begin{aligned}
& {\left[e_{1}, e_{2}\right]=n^{3} e_{3}-a_{2} e_{1}+a_{1} e_{2}, \quad\left[e_{3}, e_{1}\right]=n^{2} e_{2}-a_{1} e_{3}+a_{3} e_{1}, \quad\left[e_{2}, e_{3}\right]=n^{1} e_{1}-a_{3} e_{2}+a_{2} e_{3}} \\
& \omega\left(e_{1}, e_{2}\right)=-2 n^{3} a_{3}, \quad \omega\left(e_{3}, e_{1}\right)=-2 n^{2} a_{2}, \quad \omega\left(e_{2}, e_{3}\right)=-2 n^{1} a_{1}
\end{aligned}
$$

with the real parameters $\left(n^{1}, n^{2}, n^{3}, a_{1}, a_{2}, a_{3}\right)$ specified in the table. Algebras corresponding to different ($n^{1}, n^{2}, n^{3}, a_{1}, a_{2}, a_{3}$) are nonequivalent.

Finally we show that any ω-deformed Lie algebra must have quite nontrivial structure constants. Indeed, in any dimension $\operatorname{dim} V=n>2$ the structure constants of an ω-deformed Lie algebra, which are defined by $\left[e_{i}, e_{j}\right]=c_{i j}^{k} e_{k}$, may be decomposed as follows:

$$
c_{j k}^{i}=\alpha_{j k}^{i}+a_{k} \delta_{j}^{i}-a_{j} \delta_{k}^{i},
$$

where

$$
\alpha_{i k}^{i}=0, \quad a_{k}=\frac{1}{n-1} c_{i k}^{i} .
$$

Then a simple calculation using the ω-deformed Jacobi identity (1.3) shows that

$$
\omega\left(e_{j}, e_{k}\right)=\frac{n-1}{n-2} a_{i} \alpha_{j k}^{i} .
$$

This shows that nonvanishing ω is only possible if both a_{i} and $\alpha_{j k}^{i}$ are nonvanishing.

Acknowledgements

I am very grateful to Jose Figueroa-O'Farrill for reading the draft of this paper and correcting an error in my enumeration of the Bianchi types. I also wish to thank David Calderbank for helpful discussions. This research was supported by the KBN grant 1 P03B 07529.

References

[1] L. Bianchi, Sugli spazii a tre dimensioni che ammettono un gruppo continuo di movimenti, Soc. Ital. Sci. Mem. di Mat. 11 (1897) 267.
[2] M. Bobieński, P. Nurowski, Irreducible $\mathrm{SO}(3)$ geometries in dimension five, J. Reine Angew. Math. (in press). math.DG/0507152, 2005.
[3] R.L. Bryant, 2005 (private communication).
[4] E. Cartan, Familles de surfaces isoparametriques dans les espaces a courbure constante, Ann. di Math 17 (1938) $177-191$.
[5] E. Cartan, Sur des familles remarquables d'hypersurfaces isoparametriques dans les espaces spheriques, Math. Z. 45 (1938) $335-367$.
[6] P. Nurowski, Distinguished dimensions for special Riemannian geometries. math.DG/0601020, 2006.

[^0]: E-mail address: nurowski@fuw.edu.pl.

